题目
英文
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Your implementation should support following operations:
MyCircularQueue(k)
: Constructor, set the size of the queue to be k.Front
: Get the front item from the queue. If the queue is empty, return -1.Rear
: Get the last item from the queue. If the queue is empty, return -1.enQueue(value)
: Insert an element into the circular queue. Return true if the operation is successful.deQueue()
: Delete an element from the circular queue. Return true if the operation is successful.isEmpty()
: Checks whether the circular queue is empty or not.isFull()
: Checks whether the circular queue is full or not.
中文
设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。
循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。
你的实现应该支持如下操作:
MyCircularQueue(k): 构造器,设置队列长度为 k 。
Front: 从队首获取元素。如果队列为空,返回 -1 。
Rear: 获取队尾元素。如果队列为空,返回 -1 。
enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。
deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。
isEmpty(): 检查循环队列是否为空。
isFull(): 检查循环队列是否已满。
解法
官方解法-更符合题意
class MyCircularQueue {
private int[] queue;
private int count,front,rear;
/** Initialize your data structure here. Set the size of the queue to be k. */
public MyCircularQueue(int k) {
queue = new int[k];
}
/** Insert an element into the circular queue. Return true if the operation is successful. */
public boolean enQueue(int value) {
if (isFull()) return false;
queue[rear] = value;
rear = (rear + 1) % queue.length;
count ++;
return true;
}
/** Delete an element from the circular queue. Return true if the operation is successful. */
public boolean deQueue() {
if (isEmpty()) return false;
front = (front + 1) % queue.length;
count --;
return true;
}
/** Get the front item from the queue. */
public int Front() {
if (isEmpty()) return -1;
return queue[front];
}
/** Get the last item from the queue. */
public int Rear() {
if (isEmpty()) return -1;
return rear == 0 ? queue[queue.length - 1] : queue[rear - 1];
}
/** Checks whether the circular queue is empty or not. */
public boolean isEmpty() {
return count == 0;
}
/** Checks whether the circular queue is full or not. */
public boolean isFull() {
return count == queue.length;
}
}
解法二:利用数组长度和计数降低难度
class MyCircularQueue {
private int[] queue;
private int count,front,rear;
/** Initialize your data structure here. Set the size of the queue to be k. */
public MyCircularQueue(int k) {
queue = new int[k];
}
/** Insert an element into the circular queue. Return true if the operation is successful. */
public boolean enQueue(int value) {
if (isFull()) return false;
queue[rear] = value;
rear = (rear + 1) % queue.length;
count ++;
return true;
}
/** Delete an element from the circular queue. Return true if the operation is successful. */
public boolean deQueue() {
if (isEmpty()) return false;
front = (front + 1) % queue.length;
count --;
return true;
}
/** Get the front item from the queue. */
public int Front() {
if (isEmpty()) return -1;
return queue[front];
}
/** Get the last item from the queue. */
public int Rear() {
if (isEmpty()) return -1;
return rear == 0 ? queue[queue.length - 1] : queue[rear - 1];
}
/** Checks whether the circular queue is empty or not. */
public boolean isEmpty() {
return count == 0;
}
/** Checks whether the circular queue is full or not. */
public boolean isFull() {
return count == queue.length;
}
}